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A finite element package is presented that is able to treat two-dimensional Schroedinger 
equation problems over a tinite region with an arbitrary potential and homogeneous 
boundary conditions. In order to present the applicability and accuracy of this approach, 
two cases for which the exact solution is known are solved: (i) a free particle in a spherical 
box, (ii) a hydrogen atom enclosed in a finite sphere. The results definitely indicate that 
the finite element method is both accurate and efficient and could serve as a useful tool in 
various single particle quantum mechanical problems. 

INTRODUCTION 

During the past few years there was a rapid development of finite element methods 
replacing the widely used finite differences approach, in various areas of numerical 
analysis. However, only recently [l] this new method was applied regarding the 
Schroedinger equation. The case considered was that of one particle in a Coulomb 
field, reduced, due to spherical symmetry, to a one-diemsnional problem. 

The purpose of this work is to present a finite element package for solving a certain 
class of two-dimensional elliptic partial differential equations. This package was 
modified to enable one to treat two-dimensional Schroedinger equation problems 
over a finite region with an arbitrary potential and homogeneous boundary con- 
ditions. The method is applicable to a variety of problems such as the quantum cell 
model [2], the compressed hydrogen atom [3-51, low lying T+T* transitions in 
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substituted benzenes [6], and for the calculation of the nuclear potential energy by 
the microscopic method [7]. 

In order to demonstrate the applicability and accuracy of this approach, two cases 
for which the exact solution can be found are solved: (i) a free particle in a spherical 
box; (ii) a hydrogen atom enclosed in a finite sphere. It should be stressed that although 
these cases are very simple and specific, the results test the method for the general case. 
They definitely indicate that the finite element method is both accurate and efficient, 
and could serve as a useful tool in various single particle quantum mechanical 
problems. 

THE NUMERICAL METHOD-MANFEP 

(a) Formulation of the General Problem 

In order to solve the Schroedinger equation, a two-dimensional finite element 
package, MANFEP [8], is used. This package can solve either a general second order 
elliptic partial differential equation of a certain form over a finite region, with 
Dirichlet, homogeneous Neumann, or mixed boundary conditions, or a general 
eigenvalue problem related to the same operator. 

Let R be a finite region at the x-y plane and let r be its boundary. Consider the 
following elliptic partial differential equation 

L#=$(ag+b $$)+~(b~++)+d~= -P, (x,Y)ER (1) 

where a, b, c E C’(R); d,p E C(R); and ac s b2. The general boundary value problem 
for MANFEP would be formulated as follows: Find a function fi E C2(R) that 
satisfies (1) as well as the boundary conditions 

*=f onr,, (2) 

(3) 

-II($) . ri + u# = h onr2, (4) 

where r = r, + r2 + r, ; f E C(r,); (T, h E C(r,); cr > 0, and A is the outward 
normal unit vector at the boundary. The general eigenvalue problem is given as follows 
Find a real h and a nontrivial function $ E G(R) that satisfies 

L* -I- he* = 0, (x, Y) E R (5) 

along with homogeneous Dirichlet or Neumann boundary conditions on r, i.e., 

* =0 on& (6) 
and 

where r = S, + S, . 

--D(yG) * fi = 0 on S2, (7) 



TWO-DIMENSIONAL SCHROEDINGER EQUATION 171 

(b) The Functional 

Both the boundary value and the eigenvalue problems are solved by minimizing 
a certain functional that depends upon L, p, or e and the boundary conditions. 
To solve the boundary value problem one should minimize 

over 

The minimum solution #0 would then satisfy (l)-(4). The homogeneous Neumann 
boundary condition over I’, is automatically fulfilled by z&, and is therefore often 
mentioned as a “natural” boundary condition. 

In order to solve the general eigenvalue problem a similar functional 

needs to be minimized over 

ME = (3) 1 # E C2(R + r); # = 0 on SJ. (11) 

In the particular case of a Neumann eigenvalue problem, FE is minimized over 

{c) The Finite Element Method 

Clearly, one cannot expect to minimize (8) and (10) simply by trial of a large 
sequence of test functions. A more algorithmic approach is needed. The finite element 
approach, coupled with the Rayleigh-Ritz method, is the technique used. In particular, 
h4ANFEP uses triangular isoparametric elements [9], and is superior to a finite 
differences approach in treating singular terms and curved boundaries. A detailed 
comparison is given by Askar [l]. 

A “triangle” (or “element”), not necessarily with straight sides, is given in “global” 
coordinates x - y together with M specified points {(xi , u~)}E:‘,, on its boundary and 
in its interior. We seek a transformation from “local” coordinates 5 - 77 to global 
coordinates, so that M fixed points in a “local triangle,” {(ci , Q)}& , will transfer to 
{(xi , yJ)& . This is done by introducing “shape” functions {ai(c, +}zl that satisfy 
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The transformation is then 

(14) 

The shape functions may be of any form provided (13) holds. However, throughout 
MANFEP, restriction is made to polynomials. Also, the source of any global element 
at the local plane is always taken as the triangle (0, 0), (LO), (0, 1). 

The shape functions are used to approximate a given function Z&C, u) within a 
global element. First, using the Rayleigh-Ritz procedure, # is represented by an 
Nth order polynomial 

#Ix3Y) = i+~NCijXiY'. (1% 

The number of the unknown coefficients is 

M = (N + l)(N + 2)/2. (16) 

However, they can be replaced by an equivalent set of M variables, the “node 
potentials” (z,& = #(xi , JJJ, i = l,..., M}, thus getting 

(17) 

Nsl ,M=3 N:2, hi:6 N=3, M-10 NsL,M.lS 

FIG. 1. Nodes assigned to the fixed local element. 

The values that N takes are 1, 2, 3, 4. Accordingly, M is given by 3, 6, 10, 15, 
respectively. The nodes assigned to the fixed local element are shown in Fig. 1. 
The points in the global element to which the local nodes are transferred are chosen 
so that all proportions are kept. The original nodes in the local element are created 
by a homogeneous Cartesian grid. The shape functions for the different choices of N 
are given in [S, p. 141. 

To apply the finite element technique, R is divided into elements, and (17) is applied 
for each of them and substituted into either FB or FE. All integrations need to be 
performed in the global plane, but are practically done over the local element using 
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Gaussian quadrature formulas. In order to calculate &Jax, &Q/@ one should use 
the relation 

The computation of FB , FE is given in detail in [8, p. 15-161. Their final forms are 
quadratic in {z/J~}~=~ , and to minimize it, one solves a set of linear equations 

aFja+, = 0, i = l,..., k. (19) 

In the case of a boundary value problem one gets to solve 

S$ = B, cm 

where S, B are the “finite matrices” of size k x k, k x 1, respectively, S is banded and 
symmetric, and $ is the solution vector of node potentials, i.e., the finite element 
approximated solution of (l)-(4). Once S is created, the Dirichlet boundary values 
are imposed, and S is reduced by deleting rows and columns, respectively. 

For an eigenvalue problem one finally needs to solve a matrix eigenvalue equation 

@+W$=o, (21) 

where S, T are both symmetric of size k x k. 

(d) Schroedinger Equation with Homogeneous Dirichlet Boundary Conditions 

Two, rather simple, Schroedinger problems which contain, however, all the 
ingredients needed for demonstrating and testing the method presented above are 
dealt with. 

Consider the motion of an electron of mass m, and charge e in a spherically 
symmetric, infinitely deep potential well, assuming it to be confined to a sphere of 
radius r, , i.e., 

V(r) = co, r > ro, (22) 

where V(r) is the potential field. The motion inside the spherical “box” is “free” 
in case (i), i.e., 

V(r) = 0, r < r. (23) 

and is ruled by Coulomb potential law 

in case (ii). 

V(r) = -e2/r, r < r. (24) 

Case (i) is a well-known textbook problem, while case (ii) is the problem of the 
“compressed hydrogen atom” and can be treated semianalytically [3]. 
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The stationary Schroedinger equation for a single particle of mass m, , moving 
in the potential field V(r) is 

-WW7d VW + v(r) #(r> = W(r), (25) 

where r = (x, y, z), E is a possible energy level for the electron, and A is the Planck 
constant h divided by 27~. 

Assume V(r) to be axially symmetric, z being the axis of symmetry. Then the 
z component of the angular momentum, L, , is classically conserved, and the corre- 
sponding operator L, commutes with the Hamiltonian so that the azimuthal quantum 
number m is a good quantum number. In spherical coordinates one can separate 

#(r, 0, 4) = u(r, 0) eimd (26) 

and thus replace (25) by 

Vf,,u(r, f?) - 2 [Vdf(r, 8; m) - E] u(r, 8) = 0 (27) 

where 

ia a Vf,,=-- r F +V 
r2 ar ( ) r2stn8~(Sine~~ 

and 

h2 m2 
V&r, 8; m) = V(r, e) + - v 

2m, r2 sm e * 

(28) 

If, further, V(r) is spherically symmetric, then by substituting 

u(r, 4 = f(r) plv9, (30) 

pz”(e) being the associated Legendre function, one can reduce (27) to a one- 
dimensional “radial” equation. Here, however, this last separation is deliberately 
not done, and the problem’s two-dimensional characteristics are thus retained, since 
it is a relatively easy matter to check the solution’s 0 dependence. 

For a spherically symmetric potential it is also known that the energy levels do not 
depend on m, and this work therefore confines itself to the simplest case, namely, 
m = 0. 

One should now define the reduced units 

p = a-+, E = /FE, (31) 

where 
a = fi2/moe2, /I = h2/2m0ff2, (32) 

which are the standard atomic units. The Schroedinger equation will then take the 
forms 

case (i): V~,,U@, e) + EU@, e) = 0; 

case (ii): V”,,u(p, e) + [(2/p) + E] u(p, e) = 0; 

(33) 

(34) 
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both with homogeneous Dirichlet boundary conditions 

where p,, = &rO . 
4Po 3 4 = 0, o<e<2T (35) 

In order to solve (33)-(34), these equations should be transformed to the form (1). 
This can be done by using Cartesian coordinates. By substituting x = p cos 8, 
y = p sin 9 one gets 

case (i): y ($ + $) + $ + yru = 0; 

a224 a%4 
case (ii): y (p + 52 --)+$+y(;+E)u=o. 

(36) 

These eigenvalue equations need to be solved over R = {(x, y) 1 x2 + y2 < po2} with 
boundary conditions 

4% Y) = 0, x2 + y2 = PO”. (38) 

Let u,,(x, y) be an eigenvector of either (36) or (37). One can easily show that u~(x, y) 
defined as 

wx, Y> = uob-3 Y>, 4’30 
= U,(& -y>, Y<O 

(39) 

solves the same equation as well. Thus by using uniqueness one immediately deduces 
that 

uo(x, Y) = uo(x, -Y>, y < 0. (40) 

Thus, Eqs. (36)-(37) need to be solved only over the upper half of the circle, R, = 
((x, y) I x2 + y2 < po2, y > 01, with homogeneous Neumann boundary conditions 
(substitute y = 0 in (36)-(37)) along the diameter, i.e., 

au/an (x, 0) = 0, 1x1 GPO. (41) 

Furthermore, instead of solving (36)-(37) over R, , one may equivalently consider 
in each case two different problems, both over the first quadrant 

R, = {(x, y) I x2 + y2 < po2, x > 0, y > O}. (42) 

The first problem is presented by the boundary conditions 

4x, Y) = 0, x2 + Y2 = po2, 
au/an (x, 0) = 0, 0 < x \< po, (43) 
au/an (0, y) = 0, 0 GY GPO, 

and is considered as a “Neumann problem.” The second set of boundary conditions 
is 

4x, Y) = 0, x2 + Y2 = po2, 
au/an (x, 0) = 0, 0 <x < po, (44) 

40, Y> = 0, 0 GY GPO, 

and presents a “Dirichlet problem.” 
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Both problems are solved for various values of p,, with and without the singular 
term 2y/p. This term, although bounded, produces discontinuity at the origin (0, 0). 
This causes discomfort regarding the numerical integration that has to be performed. 
For the one-dimensional case [l], it is avoided by using analytic integration. Here 
one can treat it by properly dividing R, into the triangular elements TI ,..., Tn. 
These are chosen to be radial (Fig. 2), thus softening the discontinuity of 2y/p by 
having to integrate it separately over different elements that within each of them, 
can be considered continuous (for integration purposes). 

FIG. 2. The division into radial triangular elements. 

This approach leads to accurate results and is used throughout the numerical 
work. Generally, six radial elements and fourth-order polynomial approximations 
are enough to provide sufficient accuracy in calculating both eigenvalues and eigen- 
vectors for a long range of p0 . The number of node potentials was k = 36 (40) for a 
Dirichlet (Neumann) problem. Upon taking the same number of elements, with only 
one or two touching at the origin, the accuracy drops significantly as expected. 

NUMERICAL RESULTS 

This section presents the first 15 energy levels for the case (i)-(ii). In the second case 
the levels are calculated for various values of p,, . Comparison of the f? dependence 
of the eigenvalues with prO(cos 13) enables one to determine the angular momentum 
quantum number Z, associated with the corresponding energy level. 

Case (i) 

The results are summarized in Table I. The exact energy levels are given by 
E =jJ2~~~, where (jlSS} are the zeros of Bessel functions of half integer order, i.e., 
Jl+(l12)(j& = 0. One finds that the 0 dependence of the finite element solution is 
sufficiently accurate to determine I. The lower eigenvalues produced by MANFEP 
are very accurate, and although the accuracy slowly drops as one moves to higher 
energy levels, it is still satisfactory for a relatively large number of them. The computer 
time needed for completely solving one problem is approximately 3 min on a 
CDC-3600 computer. 
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TABLE I 

Energy Levels of a Free Electron in a Spherical Box of Radius O.lu, (a, = Bohr radius)” 

Angular momentum 
I Exact 

Energy 

MANFEPb MANFEPO 

0 493.48 493.49 
1 1009.54 1009.71 1009.60 
2 1660.87 1661.70 

0 1973.92 1975.09 
3 2441.56 2460.76 2442.28 
1 2983.98 3079.09 2986.82 

4 3347.72 3406.29 
2 4135.96 4598.79 
5 4376.56 4472.64 4391.35 
0 4441.32 5078.45 
3 5425.82 5976.32 5450.95 
6 5525.98 5644.09 
1 5944.99 6925.99 5990.48 
7 6794.32 7043.91 6882.40 
4 6850.25 7419.64 

a The energy is expressed in atomic units (i.e., ez/a,). 

b With six radial elements. 
c With seven nonradial elements. 

TABLE II 

The Energy Levels, E, of the Hydrogen Atom Enclosed in a Spherical Box of Radius p0 as Calculated 

by MANFEP 

p. = 0.3 po = 0.5 p. = 0.81 PO = 2 PO = 2.528 p. = 2.67 p,, = 5.02 po = 5.086 

46.593 (0) 14.748 (0) 4.392 (0) -0.1249 (0) -0.3734 (0) -0.4945 (0) 
106.001 (1) 36.666 (1) 13.084 (1) 1.5764 (I) 0.8247 (1) 0.00026 (1) 
179.164 (2) 63.184 (2) 23.297 (2) 3.3280 (2) 1.5589 (0) 0.1381 (0) 
208.992 (0) 72.707 (0) 26.199 (0) 3.3310 (0) 1.7102 (2) 0.3255 (2) 
268.290 (3) 95.352 (3) 35.605 (3) 5.3737 (3) 3.2388 (3) 0.6454 (3) 
333.438 (1) 117.951 (1) 43.710 (1) 6.3911 (1) 3.7840 (1) 0.6781 (1) 
373.604 (4) 133.327 (4) 50.111 (4) 7.7827 (4) 4.2285 (4) 1.0581 (4) 
492.299 (5) 176.108 (5) 66.443 (5) 10.3750 (0) 5.3726 (0) 1.0894 (0) 
503.933 (2) 179.720 (2) 67.475 (2) 10.4300 (2) 5.6465 (2) 1.3897 (2) 
549.369 (0) 194.148 (0) 71.811 (0) 10.4811 (5) 6.4441 (5) 1 4526 (5) 
622.620 (6) 223.062 (6) 84.357 (6) 13.4341 (6) 7.4105 (6) 1.9697 (6) 
658.049 (3) 235.460 (3) 88.869 (3) 14.0402 (3) 8.6383 (3) 1.9542 (3) 
765.158 (1) 274.401 (7) 103.994 (7) 16.4742 (1) 10.1294 (1) 2.2926 (1) 
774.892 (7) 277.120 (1) 104.513 (1) 16.5550 (7) 10.3152 (7) 2.4176 (7) 
818.606 (4) 293.307 (4) 110.940 (4) 17.6795 (4) 9.7565 (4) 2.5980 (4) 

a p. , E are expressed in atomic units, a, and .?/a,, , respectively. The angular momentum quantum 
number, I, is given in parentheses. 
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Since the singular term 2y/p does not appear in case (i), one should expect that for 
a given number of elements, the radial-type division would not necessarily provide an 
optimal choice. 

TABLE III 

The Effect of Taking an Increased Number of Radial Elements upon the Lowest Eigenvalues Produced 
by MANFEP for the Compressed Hydrogen Atom 

Level No. of radial elements p0 = 0.81 PO = 2 po = 5.02 

“1s” 2 4.3934 -0.1242 
4 -0.1248 -0.4941 
6 4.3917 -0.1249 -0.4945 

“2s’ 2 26.224 3.3339 
4 3.3302 0.1369 
6 26.199 3.3310 0.1381 

TABLE IV 

Comparison between the Results of MANFEP and the Exact Energy Levels for the Compressed 
Hydrogen Atom 

Level PO E (MANFEP) E (exact) 

“LS” 0.81 4.39 4.39 
“2s” 0.81 26.20 26.2 
“2s” 0.5 72.70 12.1 
“3s” 0.5 194.15 171.5 
“2s” 1.76 4.56 4.56 
“3s” 1.76 13.77 12.3 

Case (ii) 

The results, summarized in Table II, are obtained by using six identical radiaI 
triangulars. The effect of taking an increased number of radial elements upon the 
lower eigenvalues is presented in Table III. In Table IV we compare some of the 
MANFEP results with the exact semianalytical solution in terms of the confluent 
hypergeometric function. The accuracy of the eigenfunctions produced by MANFEP 
is demonstrated in Fig. 3 where we plot the radial probability density of a free electron 
in a spherical box for the “IS” and “3d” states. The effect of adding the Coulomb 
potential (which is rather a small perturbation for small boxes) can be seen in 
Fig. 4. 
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I I 

0 0.075 0.15 S - 0.3 

FIG. 3. Radial probability density, p(p), of a free electron in a spherical box of radius p0 = 0.3 
in the states “1s” and “3d.” The radius p is in units of the Bohr radius, a, . The dots represent the 
results by MANFEP. The curves are the exact analytical solutions. 

"0 0.15 0.25 0.3 
s 

- 0.5 

FIG. 4. Radial probability density, p(p), of an electron in the ground state of the compressed 
hydrogen atom (box radii p,, = 0.3 and p,, = 0.5). To see the effect of the Coulomb potential we 
plot also p(p> for the ground state of the free electron in a box. The energy levels are: 

PO 

Radius of box 

EO 

Free electron With Coulomb attraction 

0.3 54.83 1 46.593 
0.5 19.739 14.748 

CONCLUSION 

We presented a finite element package that is able to treat a two-dimensional 
Schroedinger equation over a finite region with an arbitrary potential and homo- 
geneous boundary conditions. The results for the simple, exactly solvable problems 
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of the particle in a box and the compressed hydrogen atom detitely indicate the 
applicability of the method in various single particle quantum mechanical problems. 
With this tool at hand the road is open for treating more complex physical problems. 
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